\(\int \frac {1}{\sqrt {1-x^3}} \, dx\) [466]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 11, antiderivative size = 115 \[ \int \frac {1}{\sqrt {1-x^3}} \, dx=-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \]

[Out]

-2/3*(1-x)*EllipticF((1-x-3^(1/2))/(1-x+3^(1/2)),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2+x+1)/(1-x+3^(1
/2))^2)^(1/2)*3^(3/4)/(-x^3+1)^(1/2)/((1-x)/(1-x+3^(1/2))^2)^(1/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {224} \[ \int \frac {1}{\sqrt {1-x^3}} \, dx=-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}} \]

[In]

Int[1/Sqrt[1 - x^3],x]

[Out]

(-2*Sqrt[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] - x)/(1 +
Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.13 \[ \int \frac {1}{\sqrt {1-x^3}} \, dx=x \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},x^3\right ) \]

[In]

Integrate[1/Sqrt[1 - x^3],x]

[Out]

x*Hypergeometric2F1[1/3, 1/2, 4/3, x^3]

Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 3.90 (sec) , antiderivative size = 12, normalized size of antiderivative = 0.10

method result size
meijerg \(x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};x^{3}\right )\) \(12\)
default \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}\) \(107\)
elliptic \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {-1+x}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, F\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}\) \(107\)

[In]

int(1/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

x*hypergeom([1/3,1/2],[4/3],x^3)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 6, normalized size of antiderivative = 0.05 \[ \int \frac {1}{\sqrt {1-x^3}} \, dx=-2 i \, {\rm weierstrassPInverse}\left (0, 4, x\right ) \]

[In]

integrate(1/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-2*I*weierstrassPInverse(0, 4, x)

Sympy [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.25 \[ \int \frac {1}{\sqrt {1-x^3}} \, dx=\frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \]

[In]

integrate(1/(-x**3+1)**(1/2),x)

[Out]

x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(2*I*pi))/(3*gamma(4/3))

Maxima [F]

\[ \int \frac {1}{\sqrt {1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} + 1}} \,d x } \]

[In]

integrate(1/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(-x^3 + 1), x)

Giac [F]

\[ \int \frac {1}{\sqrt {1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} + 1}} \,d x } \]

[In]

integrate(1/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(-x^3 + 1), x)

Mupad [B] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.50 \[ \int \frac {1}{\sqrt {1-x^3}} \, dx=-\frac {2\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

[In]

int(1/(1 - x^3)^(1/2),x)

[Out]

-(2*((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3
^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x
- 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/((1 - x^3)^(1/2)*(((3^(1
/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2))